Topics for group discussion

Scientists solve bird beak mystery

Birds' beaks are almost perfectly matched to the way each different kind of bird feeds.

But until now scientists did not really understand how this force worked.

As the beak scissors open and shut, each movement propels the water droplet one step closer to the bird's mouth.

So the authors have given it a name - the “capillary ratchet”.

This means that phalaropes are very sensitive to anything that contaminates the water surface

The team is now looking into microfluidic devices that use the same method of moving very small drops of water as nature does in the phalarope's beak.

Take a look at this gallery of birds' beaks. In your groups try to work out what each bird feeds on and how, just from the size and shape of its beak. When you've studied all ten, check your guesses by Googling the name of the bird. How well did you do?

Not understanding something is the starting point of all science research. Scientists ask questions. What did these scientists do to help them find an answer to their question? Think of three reasons that was more likely to give them an answer than trying to study the forces on droplets in real birds' beaks.

Read the description of how the droplet moves in this whole paragraph. Then sketch the shape of the droplet at two different times: a) when the beak is closing and b) when the beak is opening. Take a look at what leading and trailing edge mean, and at the shape of a water droplet.

A ratchet is a little gear with a lever. So the way phalaropes get food up their beaks is not really a ratchet. But it does work like a ratchet. This is an example of a metaphor. Find three other examples of metaphor or simile in this story. Do they help you to understand? How do they do that?

This means that even small amounts of oil or detergent can stop some shorebirds from feeding. Oil spills cause a great deal of damage to wildlife. Prepare a short presentation on oil spills and what can be done after they have happened to reduce the impact on wildlife. Have a look here, here and here.

Find as many examples as you can of people getting an idea from nature and using it to invent a useful device. Knowing the name for this type of thing should help your search. So here's half of the word to get you started: biomi------.

15 May 2008

Scientists solve bird beak mystery

Birds' beaks come in all different shapes and sizes depending on the food they eat. The hummingbird's beak is long and thin, which lets it reach the nectar inside the deep flowers it feeds on. The short, strong finch beak is ideal for cracking open seeds. The eagle has a hooked beak to tear the flesh of its prey.

Birds' beaks are almost perfectly matched to the way each different kind of bird feeds - as Charles Darwin first pointed out nearly 150 years ago.

Now a team of mathematicians and engineers at the Massachusetts Institute of Technology has explained exactly how shorebirds use their long, thin beaks to defy gravity and get food into their mouths. The MIT team reports on its research in the May 16 issue of Science.

In a spin

They have been studying the phalarope, a shorebird that is commonly found in western North America. Wildlife biologists have long known about the unusual way phalaropes feed. They spin in circles on the water, creating a vortex that sweeps small crustaceans up to the surface, like tea-leaves in a swirling teacup.

The birds then peck at the surface, picking up tiny droplets of water with their prey trapped inside. Since their beaks are pointed down, the drops must be moved up the long beak against the pull of gravity.

Unknown force

A force between the beak and the droplets of water pushes the food from the tip of its long beak to its mouth. But until now scientists did not really understand how this force worked.

They knew it must be coming from the drop's surface tension. This is the main force in small water-worlds, such as insects on a pond. But they didn't know exactly how this could push the droplet up the bird's beak.

A key observation was that the birds open and close their beaks in a tweezering motion to move the drop. To learn more about how this helped, Bush teamed up with Manu Prakash, a graduate student in MIT's Center for Bits and Atoms, and with David Quéré of the Ecole Polytechnique in Paris. He was a visiting professor in MIT's mathematics department at the time of the study.

Bird-beak model

Together the scientists built a mechanical model of the phalarope beak. They then studied this to see in slow motion just what happens.

They found that the drop goes up the beak because of something called contact angle hysteresis. “Usually this makes liquid drops stick to solids. Raindrops for instance stick to window panes because of contact angle hysteresis.

But the scientists found that the shape of the phalarope's beak, combined with contact angle hysteresis, is what moves the drop upward.

This may be the first known example where droplet motion is enabled rather than resisted by contact angle hysteresis,” Bush says.

Scissors and ratchets

As the beak scissors open and shut, each movement propels the water droplet one step closer to the bird's mouth. When the beak closes, the drop's leading edge moves toward the mouth, while the trailing edge stays put. When the beak opens, the leading edge stays in place while the trailing edge moves toward the mouth.

It's a series of steps, like a ratchet. So the authors have given it a name - the “capillary ratchet”.

The scientists found that how well the whole thing works depends on the shape of the beak. So does how fast the drop moves. The fastest it can move is about 1 metre per second. Long, narrow beaks work best. The opening and closing angles of the beak are also important.

Varying these angles by a few degrees can change the drop speed by a factor of 10,” Quere says.

Getting really wet

The working of the capillary ratchet also depends strongly on a property of the beak called "wettability". This is a measure of how well a liquid spreads out to wet a surface, rather than forming droplets. Oil for instance is much more “wetting” than water. So if the beak has oil on it from a spill, the capillary ratchet won't work and the bird can't feed.

This means that phalaropes are very sensitive to anything that contaminates the water surface - and so are about 20 other bird species that use the same mechanism. Detergents or oils on the water will cause serious problems to these birds.

“Some species rely exclusively on this feeding mechanism, and so are extremely vulnerable to oil spills,” said John Bush, MIT associate professor of applied mathematics and senior author of the paper.

Appliance of science

The researchers point out one possible application for the new understanding they now have. Little machines called microfluidic devices that can move tiny drops of liquid very precisely have many novel applications - beside the inkjet printer which has been around for a while.

They include DNA analysis, on the spot diagnosis of disease and real-time testing of air or water samples for dangerous pathogens.

The team is now looking into microfluidic devices that use the same method of moving very small drops of water as nature does in the phalarope's beak.

Text adapted from a press release written by Anne Trafton at MIT News Office.

 

More seabird resources for teachers at Scottish Seabird Centre.

More help with words

breed cells conception conference device DNA
elastic environment evolution fertile fertilisation gear
genes inherit journal lever molecule rigid